鋁合金結晶組織的微細化會顯著提高鋁材的強韌性、組織均勻性、致密性、 耐蝕性、加工工藝性和表面質量等,并減少偏析和裂紋等諸多鑄造缺陷。目前, 國內(nèi)外通常采用 Al-Ti-B 或 Al-Ti-C 中間合金來細化晶粒,但 Al-Ti-B 中間合金 126 的形核襯底質點 TiB2 本身的直徑大小在 0.5-3.0μm,而且往往以較大的聚集團 形式存在,如此大的顆粒團在加入到鋁合金中后會帶來一系列的副作用。而普 通 Al-Ti-C 中間合金細化效果不穩(wěn)定,易衰退,難以滿足鋁制品產(chǎn)品質量的要 求。 Al-Ti-C 中間合金之所以細化效果不穩(wěn)定和容易衰退,是由于其中的 TiCx 晶體存在較多碳空位,從而使之失穩(wěn),且隨 TiCx中碳空位數(shù)量的增加,Al 原子 在 TiCx 表面的偏聚及有序化受到抑制,由原來的完全共格逐漸轉變?yōu)椴煌耆?格。因此,減少 TiCx中的碳空位是提高其結構穩(wěn)定性和生核效率的關鍵。 研究表明,無空位的 TiC 是鋁的有效生核襯底,在接近凝固點的鋁熔體中, Al 原子能夠依附于其周圍形成一個完全共格的有序區(qū),最終促進 α-Al 生核和鋁 晶粒細化。經(jīng)過長期的研究和探索發(fā)現(xiàn),TiCx 中的碳空位可以被原子半徑較小 的 B、N 等原子填充,最終形成摻雜型的 TiCxB1-x和 TiCxN1-x等粒子,從而降低 空位濃度并提高異質生核能力。 B 摻雜型 Al-Ti-C 晶種合金中含有大量直徑在 1μm 以下(亞微米)的 TiCxB1-x 晶核襯底粒子,且彌散分布,當將該中間合金以微量(0.15%左右)加 入到待細化的鋁及其合金熔體中后,立即釋放出大量的亞微米級的摻雜型 TiC 晶核,從而使待細化鋁合金的晶粒組織得到顯著細化甚至超細化(指晶粒直徑 在微米級)。因此,采用摻雜型 Al-Ti-C 晶種合金對鋁熔體進行晶粒細化處理 將是鋁加工行業(yè)又一次重要的技術進步。
掃碼關注,查看更多科技成果